

The (c)GENIE Earth system model (version muffin)

250.2020

1 1s ¹ hydrogen 1.008	2A											3A	4A	5A	6A	7A	2 He ^{15²} helium 4.003
3 Li _{[He]2s} ¹ lithium 6.941	4 Be [He]2 ² beryllium 9.012											5 B [He]2s ² 2p ¹ boron 10.81	6 C [He]2\$ ² 2p ² carbon 12.01	N [He]2 ^{s²2p³ nitrogen 14.01}	8 0 [He]2 ^{g2} 2 ^{p4} oxygen 16,00	9 [He]2 ² 2p ⁵ fluorine 19.00	10 Ne ^{[He]2²2^{p6} neon 20.18}
11 Na _{[Ne]35¹ sodium 22.99}	12 Mg ^{Ne]32} magnesium 24.31	3B	4B	5B	6B	7B		—8B -		11B	12B	13 A1 ^{[Ne]3²3p¹ aluminum 26.98}	14 Si ^{[Ne]3\$²3p² silicon 28.09}	15 P [Ne]3 ² 3p ³ phosphorus 30.97	16 S [Ne]3 ² 3p ⁴ sulfur 32.07	17 Cl ^{[Ne]3s²3p⁵ chlorine 35:45}	18 Arr [Nej3 ² 3p ⁶ argon 39.95
19 K [Ar]4s ¹ potassium 39.10	20 Ca [Ar]4s ² calcium 40.08	21 Sc [Ar]4s ² 3d ¹ scandium 44.96	22 Ti [Ar]4s ² 3d ² titanium 47.88	23 V [Ar]4s ² 3d ³ vanadium 50.94	24 Cr [Ar]4s ¹ 3d ⁵ chromium 52.00	25 Mn [Ar]4s ² 3d ⁵ manganese 54.94	26 Fe (Arj4s ² 3d ⁶ iron 55.85	27 Co [Ar]4s ² 3d ⁷ cobalt 58.93	28 Ni _{[Ar]45²3d⁸ nickel 58.69}	29 Cu (Arj4s ¹ 3d ¹⁰ copper 63.55	30 Zn [Ar]4s ^{23d¹⁰ zinc 65.39}	31 Ga [Arj4s ² 3d ¹⁰ 4p ¹ gallium 69.72	32 Ge [Ar]4s ² 3d ¹⁰ 4p ² germanium 72.58	33 AS [Ar]45 ² 3d ¹⁰ 4p ³ arsenic 74.92	34 Se [Ar]4s ² 3d ¹⁰ 4p ⁴ selenium 78.96	35 Br [Ar]4s ² 3d ¹⁰ 4p ⁵ bromine 79.90	36 Kr [Ar]4s ² 3d ¹⁰ 4p ⁶ krypton 83.80
37 Rb ^{[Kr]55} rubidium 85.4 7	38 Sr ^{[K153} strontium 87.62	39 Y ^{[Kr]5s²4d¹} vitrium 88.91	40 Zr ^{[Kr]5s²4d² zirconium 91.22}	41 Nb ^{[Kr]55¹4d⁴ niobium 92.91}	42 Mo ^{[Kr]5s¹4d⁵ molybdenum 95·94}	43 Tc [Kr]5s ² 4d ⁵ technetium (98)	44 Ru [Kr]55 ¹ 4d ⁷ ruthenium 101.1	45 Rh [Kr]5s ¹ 4d ⁸ rhodium 102.9	46 Pd [Kr]4d ¹⁰ palladium 106.4	47 Ag ^{[K:]55¹4d¹⁰ silver 107.9}	48 Cd _{[K155²4d¹⁰ cadmium 112.4}	49 In ^{[K15524d^{105p1} indium 114.8}	50 Sn ^{[Kr]5s²4d¹⁰5p² in 118.7}	51 Sb ^{[Kr]524d105p3} antimony 121.8	52 Te ^{[Kr]55²4d¹⁰5p⁴ tellurium 127.6}	53 J [Kr]5 ² 4d ¹⁰ 5p ⁵ iodine 126.9	54 Xee [K15s ² 4d ¹⁰ 5p ⁶ xenon 131.3
55 CS [Xej65 ¹ cesium 132.9	56 Ba ^{[Xe]6² barium 137-3}	57 La* ^{[Xe]63²5d¹ lanthanum 138.9}	72 Hf ^{[Xe]6²4¹⁴5d² hafnium 178.5}	73 Ta ^{[Xe]65²41¹⁴50³ tantalum 180.9}	74 W ^{[Xe]624f¹⁴5d⁴ tungsten 183.9}	75 Re ^{[Xe]624f^{145d5} rhenium 186.2}	76 OS ^{[Xe]624f145d6} osmium 190.2	77 Ir _{[Xe]65²4f¹⁴5d⁷ iridium 190.2}	78 Pt [Xe]6s ¹ 41 ¹⁴⁵⁰⁹ platinum 195.1	79 Au ^{[Xe]65¹4f¹⁴5d¹⁰ gold 197.0}	80 Hg [Xe]6 ² 4f ¹⁴ 5d ¹⁰ mercury 200.5	81 xej6 ² 4f ¹⁴ 5d ¹⁰ 6p ¹ thallium 204.4	82 Pb _{xej65²4f¹⁴5a¹⁰6p² lead 207.2}	83 Bi _{xef6241} ¹⁴ 50 ¹⁰ 6p ³ bismuth 208.9	84 PO _{[Xe]6241} ^{145d106p4} polonium (209)	85 At _{Xej6241} ^{145d106p5} astatine (210)	86 Rn (xejb5 ² 41 ¹⁴ 51 ¹⁰ 8p ⁶ radon (222)
87 Fr ^{[Rn]75} francium	88 Ra ^{[Ro]7} ² radium	89 Ac~ Rnj7 ^{26d1} actinium	104 Rf (Rn)7 ² 51 ¹⁴ 6d ² rutherfordium	105 Db (Rn)7 ² 5f ¹⁴ 6d ³ dubnium dubnium	106 Sg [Rn]7 ² 51 ¹⁴ 6d ⁴ seaborgium	107 Bh (Rn)7*5f ¹⁴ 6d ⁵ bohrium	108 Hs [Rn]7s ² 5f ¹⁴ 6d ⁶ hassium (265)	109 Mt (Rn]7851 ¹⁴⁶⁴⁷ meitnerium	110 DS (Rn)7\$5f ¹⁴ 6d ⁹ darmstadtium	111 Uuu	112 Uub						

1A

250.2017

Insights into the evolution of life and the Planet through carbon isotopes and numerical modelling techniques

(and a flimsy excuse to talk about the PETM)

Andy Ridgwell

Carbon isotopes as a tracer of ... what?

 $R_{sample} > R_{stand.}$ $\delta(sample) = (R_{sample}/R_{stand.} - 1) \times 1000$ $=> \delta(sample) \text{ is POSITIVE}$ ('isotopically enriched') $R_{sample} > R_{stand.}$ $\delta(sample) = (R_{sample}/R_{stand.} - 1) \times 1000$ $=> \delta(sample)$ is NEGATIVE ('isotopically depleted')

abundance ratio(sample): $R_{sample} = n_{heavy}/n_{light}$ $\delta(sample) = (R_{sample}/R_{stand.} - 1) \times 1000$

lA																	
1 1s ¹ hydrogen 1.008	2A											3A	4A	5A	6A	7A	2 He ^{15²} helium 4.003
3 Li ^{[He]2s¹ lithium 6.941}	4 Be _{[He]2\$} beryllium 9.012											5 B [He]2s ² 2p ¹ boron 10.81	6 C [He]2 ^{22p²} carbon 12.01	7 N [He]2s ² 2p ³ nitrogen 14.01	8 0 [He]25 ² 2p ⁴ 0Xygen 16.00	9 [He]2 ² 2p ⁵ fluorine 19.00	10 Ne _{[He]2¢2p⁶ ncon 20.18}
11 Na _{[Ne]35} 1 sodium 22.99	12 Mg ^{[Ne]35² magnesium 24.31}	3B	4B	5B	6B	7B		—8B -		11B	12B	13 Al ^{[Ne]32²3p¹ aluminum 26.98}	14 Si ^{[Ne]3s²3p² silicon 28.09}	15 P [Ne]3s ² 3p ³ phosphorus 30.97	16 S [Ne]3 ² 3p ⁴ sulfur 32.07	17 C ^{[Ne]3s²3p⁵ chlorine 35:45}	18 Ar [Ne]3 ² 3p ⁶ argon 39.95
19 K _{[A]45} 1 potassium 39.10	20 Ca [Ar]45 ² calcium 40.08	21 Sc [Ar]45 ² 3d ¹ scandium 44.96	22 T1 [Ar]45 ² 3d ² titanium 47.88	23 V [Ar]4s ² 3d ³ vanadium 50.94	24 Cr [Ar]4s ¹ 3d ⁵ chromium 52.00	25 Mn [Ar]4s ² 3d ⁵ manganese 54.94	26 Fe [A14s ^{23d⁶} iron 55.85	27 Co [Ar]4s ² 3d ⁷ cobalt 58.93	28 Ni ^{[Ar]45²3d⁸ nickel 58.69}	29 Cu [Ar]4s ^{13d10} copper 63.55	30 Zn [Ar]4 ² 3d ¹⁰ zinc 65.39	$\begin{matrix} 31 \\ Ga \\ {}_{{}^{[Ar]4s^23d^{10}4p^1} \\ gallium \\ 69.72} \end{matrix}$	32 Ge [Ar]45 ² 3d ¹⁰ 4p ² germanium 72.58	33 AS [Ar]4s ^{23d¹⁰4p³ arsenic 74.92}	34 Se [Ar]4s ² 3d ¹⁰ 4p ⁴ selenium 78.96	35 Br [Ar]4 ² 3d ¹⁰ 4p ⁵ bromine 79.90	36 Kr _{[A14s²3a¹⁰4p⁶ krypton 83.80}
37 Rb ^{K155} ^{W155} 85-47	38 Sr ^{[Kr]55² ströntium 87.62}	39 Y ^{[Kr]55²4d¹ yttrium 88.91}	40 Zr [Kr]55 ² 4d ² zirconium 91.22	41 Nb [Kr]55 ¹ 4d ⁴ niobium 92.91	42 Mo Krj5s ¹ 4d ⁵ molybdenum 95.94	43 Tc [Kr]55 ² 4d ⁵ tecinnetium (98)	44 Ru [Krj55 ⁴ 4d ⁷ ruthenium 101.1	45 Rh [Kr]55 ¹ 4d ⁸ rhodium 102.9	46 Pd ^{[Kr]4d¹⁰ palladium 106.4}	47 Ag [Krj55 ¹ 4d ¹⁰ silver 107.9	48 Cd [Kr]55 ² 4d ¹⁰ cadmium 112.4	49 In ^{[Kr]5\$24d¹⁰5p¹ indium 114.8}	${ {50}\atop{{{Sn}\atop{_{{[Kr]5s^{2}4d^{10}5p^{2}}\\{_{{In}\atop{_{{In}\atop{_{{II8.7}}}}}}}}}}}$	51 Sb [Kr]5\$24d ¹⁰ 5p ³ antimony 121.8	52 Te ^{[Kr]5s²4d¹⁰5p⁴ tellurium 127.6}	53 J [Kr]5s ² 4d ¹⁰ 5p ⁵ iodine 126.9	54 Xeon ^{[Kr]524d¹⁰5p⁶ xenon 131.3}
55 CS [Xe]68 ^d cesium 132.9	56 Ba ^{[Xe]65² barium 137.3}	57 La* ^{[Xe]62⁵5d¹ lanthanum 138.9}	72 Hf ^{[Xe]624f¹⁴5d² hafnium 178.5}	73 Ta ^{[Xe]62²4f¹⁴5d³ tantalum 180.9}	74 W [Xe]6 ² 4f ¹⁴ 5d ⁴ tungsten 183.9	75 Re ^{[Xe]65²4f¹⁴5d⁵ rhenium 186.2}	76 Os ^{[Xe]6²4f¹⁴5d⁶ osmium 190.2}	77 Ir _{[Xe]05²41¹⁴5d⁷ iridium 190.2}	78 Pt ^{[Xe]65¹4t¹⁴5d⁹ platinum 195.1}	79 Au ^{[Xe]6¹4f¹⁴5d¹⁰ gold 197.0}	80 Hg [Xe]65 ² 4f ¹⁴ 5d ¹⁰ mercury 200.5	81 T1 _{Xej65²41¹⁴5d¹⁰6p¹ thallium 204.4}	82 Pb _{Xe)65²41¹⁴5d¹⁰6p² lead 207.2}	83 B1 _{Xej624f} 45d ^{106p3} bismuth 208.9	84 Po _{[Xe]65²41¹⁴5d¹⁰6p⁴ polonium (209)}	85 At _{Xej65²41¹⁴5d¹⁰6p⁵ astatine (210)}	86 Rn _{[xəj6²41¹⁴5d¹⁰6p⁶ radon (222)}
87 Fr ^{[Rn]7s¹ francium (223)}	88 Ra ^{[Rn]7^{\$} radium (226)}	89 Ac~ [Rn]7 ² 6d ¹ actinium (227)	104 Rf [Rn]7 ² 5f ¹⁴ 8d ² rutherfordium (257)	105 Db [Rn]7 ² 5f ¹⁴ 6d ³ dubnium (260)	106 Sg [Rn]7 ² 5f ¹⁴ 6d ⁴ seaborgium (263)	107 Bh [Rn]7551 ¹⁴ 6d ⁵ bohrium (262)	108 HS [Rn]7 ² 5f ¹⁴ 6d ⁶ hassium (265)	109 Mt [Rn]7 ⁶ 5f ¹⁴ 6d ⁷ meitnerium (266)	110 Ds [Rn)7\$5f ¹⁴ 6d ⁹ darmstadtium (271)	111 Uuu (272)	112 Uub						

Carbon isotopes as a tracer of ... what?

Carbonate δ^{13} C variability through time

what exactly does it (temporal changes in δ^{13} C) mean? Re-partitioning of carbon within surficial reservoirs?

what exactly does it (temporal changes in δ^{13} C) mean? Re-partitioning of carbon within surficial reservoirs?

Re-partitioning of carbon **between** surficial reservoirs (cf. LGM)?

Contours of carbon release vs. source isotopic signature for a global -4‰ carbon isotopic excursion. Contours differ according to the initial mean global δ^{13} C.

Assimilating surface ocean pH change (only)

Gutjahr et al. [2017]

Assimilating surface ocean pH change (only)

Gutjahr et al. [2017]

Assimilating surface ocean pH and δ^{13} C

Assimilating surface ocean pH and δ^{13} C

Time since PETM onset (ka)

Assimilating surface ocean pH and δ^{13} C

Total carbon release (PgC)

what exactly does it (temporal changes in δ^{13} C) mean?

Re-partitioning of carbon within surficial reservoirs?

Re-partitioning of carbon **between** surficial reservoirs (cf. LGM)?

Injection (or removal) of isotopically light carbon?

Change in C_{org} and/or carbonate weathering and/or burial (at fixed carbonate and/or C_{org} weathering / burial)?

One can write (*Kump and Arthur* [1999], *Chem. Geol.*):

$$F_{\text{corg}} / (F_{\text{corg}} + F_{\text{caCO3}}) = \sum_{\text{ratio}}^{\text{C burial}} \frac{1}{25.0}$$

observed (recorded) carbonate δ^{13} C -5

what exactly does it (temporal changes in δ^{13} C) mean?

Re-partitioning of carbon within surficial reservoirs?

Re-partitioning of carbon between surficial reservoirs (cf. LGM)?

Injection (or removal) of isotopically light carbon?

Change in C_{org} and/or carbonate weathering and/or burial (at fixed carbonate and/or C_{org} weathering / burial)?

what exactly does it (temporal changes in δ^{13} C) mean?

Re-partitioning of carbon within surficial reservoirs?

Re-partitioning of carbon **between** surficial reservoirs (cf. LGM)?

Injection (or removal) of isotopically light carbon?

Change in C_{org} and/or carbonate weathering and/or burial (at fixed carbonate and/or C_{org} weathering / burial)?

Carbonate diagenesis and loss of primary δ^{13} C signal, either marine sedimentary or subaerial.

pH-driven re-partitioning of the where the isotopic composition of the mean surficial reservoir is held (and what carbonate samples)

A new paleo Pokémon appears – The pH control on carbonate δ^{13} C

Earth system model – physical configuration

Earth system model – carbon cycle (sedimentary) configuration

Numerical modelling – Approach

ጥ

Adapted from: Hoffman and Schrag [2002]

Enhanced weathering $\Rightarrow CO_2$ draw-down and pH increase

Continued CO_2 out-gasssing but ... minimal weathering $\Rightarrow CO_2$ buildup @ -6 o/oo and ocean pH decline

Deep-time inferences (aka 'speculation')

Thanks to:

Marcus Gutjahr [GEOMAR] Gavin Foster [NOC] Philip Sexton [The Open University] Paul Pearson [Cardiff]

Sandy Kirtland Turner [UCR]

The European Research Council Heising-Simons Foundation

