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Outline

 “Take one whole fresh super-continent and break into 
pieces. Pick out the rock phosphate and place to one side. 
Immerse the continental fragments in seawater until the 
shelves and interior seaways are thoroughly flooded.”

 “Add a pinch of CO  and heat gently.”2

 “While the ocean is warming and de-oxygenating, 
gradually stir in the phosphate that was put aside earlier. 
Keep stirring and adding CO  and phosphate until a thick 2

black carbon crust suddenly forms. Remove the crust. 
Repeat to create as many carbon layers as possible before 
the cake starts to cool and the ocean re-oxygenates.”

 The primary question is then ... 
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 An ‘estuarine-like’ circulation, bringing in relatively 
nutrient-rich water at depth and removing relatively 
nutrient-depleted waters at the surface, will tend to lead 
to the trapping of nutrients and hence regional anoxia.

 Conversely, a circulation pattern in which water is net 
exported at depth will tend to act against the 
occurrence of regional OAE-like conditions.

 However, the late Permian Tethys appears to have 
had an anti-estuarine circulation.
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(warm == stratified) && (stratified == anoxic) == .true. 

???
( ‘stratified’ || ‘sluggish’ || ‘stagnant’  )
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zonal mean latitude-depth [PO ] distribution4

A measure of the partitioning of PO  and hence oxygen consumption, 4

in the water column.

Contour overlay is the global mean overturning stream-function.
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 Strong (vigorous) ventilation of the deep ocean, rather 
than acting against the tendency towards OAE-like 
conditions, may actually be a pre-requesite as PO  is 4

more rapidly returned to shallow and intermediate 
depths .

 Conversely, weak ventilation and PO  trapping in the 4

deep ocean may tend to act against the occurrence of 
OAE-like conditions.
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Carbon cycle and

oxygen perturbations
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CO  fixation2

C  oxidationorg

C  oxidationorg

Bacterial metabolism and hence 
rate of dedregation of settling 
particulate organic matter (POM) 
should be temperate sensitive 
(e.g. Q  ca. ~2).10

It is reasonable to posit that a 
warmer ocean interior will have 
an on-average shallower depth 
of POM remineralization and 
hence more rapid nutrient 
recycling.

Evidence for this?

From: John et al. [2014] (PPP 413)
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Conclusions

 The mid Cretaceous had a tendency towards the occurrence of OAE-like 
conditions because of:
   (i) nutrient trapping in the North Atlantic region,
   (ii) vigorous ventilation of the deep ocean that helped recycle nutrients 
back towards the surface,
   (iii) warm ocean temperatures and a shallow recycling depth-scale.

 The Paleocene-Eocene did not experience the occurrence of OAE-like 
conditions because of poorer deep ocean ventilation. However, otherwise, 
ocean circulation and temperature were relatively favourable. 

 The end Permian appears anomalous in that the Tethys should have been 
nutrient poor. However, the Panthalassic ocean may have been well 
ventilated at depth with a pan-global concentration of nutrients at relatively 
shallow depths, then aided by progressive greenhouse warming. (i.e. not a 
situation of ‘spreading’ out from the Tethys but occurring truely globally)
(analogous to the relationship of the PETM to the smaller Paleocene-Eocene 
hyperthermals?)

 Or ... differences in atmospheric pO , etc etc ... ?2
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