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(1) Some GENIE results.

(2) Current/emerging GENIE developments and potential for a 
GUI-based ‘teaching model’.

(3) Future directions in ecological modelling.
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major changes vs. ‘GENIE’

 deletion of ‘legacy’ science modules, e.g. IGCM, 
GLIMMER, MOSES/TRIFFID, etc.
(improving compiler compatibility)

 attempt at parallelization
(concurrent GOLDSTEIN/BIOGEM, domain de-compositoin of 
GOLDSTEIN)

 reorganization of main GENIE.F loop and introduction 

(completion) of ‘GEMlite’

­ simplification of runmuffin.sh script configuration, name-

list checking

 complete reorganisation of redox (in progress)

 continued tracer addition and functionality such as proxy 
‘inversion’ methodology

 added netCDF restarts for biogeochem modules

 added netCDF sedcor data saving

 MATLAB plotting and analysis function development

­

­

­

­

­

­

­

­
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muffin application: Paleocene-Eocene Thermal Maximum
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1. Calculate model-data error
at a weekly time-step:

too high Þ emit carbon
‘OK’ Þ do nothing

(too low Þ remove carbon)

-1
emissions (PgC yr )

cumulative
emissions (PgC)

Computer models and
other baked goodsmuffin application: Paleocene-Eocene Thermal Maximum

13
model d C trajectory

13observed d C 

13d C error

time



Earth system
model (’GENIE’)

13
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Computer models and
other baked goodsmuffin application: Paleocene-Eocene Thermal Maximum

2. If emissions required:
Add CO  to atmosphere2

in an Earth system model

CO  2

assume:
13d C signature

of fossil fuels
for emissions



Earth system
model (’GENIE’)
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of fossil fuels
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3. Calculate new atmospheric
13

CO  d C value in model2
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issues

 continued use of FORTRAN77 code, e.g. preventing 
compile-time array dimensioning 

 netCDF installation issues (partly an issue of the use of 
C++ code in the netCDF comparison model ‘test’)

 

 

 
 

­

­

­

­

­

linux-only (a problem?) (actually, can also now be 
natively on a Mac)

non-intuative construction of experiments

limited applicability in teaching due to linux and 
command-line basis of the model
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major changes

 code management under git (not svn), so has lost its 

explicit historical link with ‘GENIE’

 conversion to F90 throughout

 progress towards all run-time dimensioning of arrays (and 
no need for re-compilation)

 simpler directory structure and job creation/submission

 xml removed (and hence no need for python xml libraries 
(and hence a simpler install))

 

­

­

­

­

­

­ cross platform support ... can be run under 
linux/MacOS/Windows
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to-do
 thorough performance profiling and optimization

 on-line /off-line matrix transport option (eventually 
replacing GEMlite)

 addition of the Darwin ecosystem model

 addition of the PALEOGENiE project ‘PAM’ (paleo-
assemblage model)

­

­

­

­

­

­

 addition of ECBILT AGCM??

 addition of JeDi terrestrial ecosystem model??

cupcake
Computer models and
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to-do
 GUI development ... ?­
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Terrestrial weathering inputs

Organic matter burial, scavenging

Fe
Mo

pCO2

(climate)

O2

- +NO , NH3 4

3-
PO4

The nature marine ecosystems and 
strength of biological productivity 
and remineralization affects:

 Oceanic macros nutrient inventories, 

esp. P and the form of fixed N.

 Ocean oxygenation and hence micro 

nutrient inventories, esp. Fe – scavanged 
in an oxic ocean, and Mo – scavenged 
in a sulphidic ocean.

 Atmospheric pCO  and climate.2

­

­

­



PALEOGENiE – motivation
Computer models and

other baked goods

The nature marine ecosystems and 
strength of biological productivity 
and remineralization affects:

 Oceanic macros nutrient inventories, 

esp. P and the form of fixed N.

 Ocean oxygenation and hence micro 

nutrient inventories, esp. Fe – scavanged 
in an oxic ocean, and Mo – scavenged 
in a sulphidic ocean.

 Atmospheric pCO  and climate.2

/end speculation

­

­

­

In turn, changes in the physical and 
biogeochemial (nutrient) environment 
will affect ecosystem composition and 
drive selection.

The approximate coincidence between 
plankton evolutionary time-scales and 
the residence time of many of the key 
ocean and atmospheric tracers raises 
the possibility of interesting dynamical 
behaviours of the full system.

Terrestrial weathering inputs

Organic matter burial, scavenging
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Creating models is effectively, the art of 
encapsulation of one’s understanding (or 
preconceptions) of a system, numerically.

BUT ...

strategies for modelling complex (marine) systems
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What happens under climate change?

What did the system look like in the past (e.g. 
Cretaceous)??

What if the structure of the system is not correctly 
understood???

strategies for modelling complex (marine) systems
Computer models and
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zooplankton

#2#1

Creating models is effectively, the art of 
encapsulation of one’s understanding (or 
preconceptions) of a system, numerically.

BUT ...
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zooplankton
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predominantly short-term laboratory
perturbation experiments

model with measured properties 
of ~2-5 cultured strains encoded 

Again:

What happens under climate change?
What did the system look like in the past (e.g. Cretaceous)?
What if the structure of the system is not correctly understood?

But also:

What about adaptation (or even evolutionary responses) to 
global change?
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(Ocean) General Ecological Models? (O-GEMs?)

?
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Marine ecosystems in silico:

 The MIT ‘Darwin’ model typically 
considered ca. n = 76 randomly-
generated trait vectors (’plankton’).

 Plankton trait vectors set 
according to physiological ‘rules’, 
e.g. larger cells have a higher nutrient 
limitation threshold, the ability to fixed 
N  comes at the expense of reduced 2

growth rate, etc.

 Plankton compete and the 
ecosystem is an emergent rather 
than prescribed property.
But ...

­

­

­
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Marine ecosystems in silico:

 The MIT ‘Darwin’ model typically 
considered ca. n = 76 randomly-
generated trait vectors (’plankton’).

 Plankton trait vectors set 
according to physiological ‘rules’, 
e.g. larger cells have a higher nutrient 
limitation threshold, the ability to fixed 
N  comes at the expense of reduced 2

growth rate, etc.

 Plankton compete and the 
ecosystem is an emergent rather 
than prescribed property.
But ...
... the geochemical environment 
and climate co-evolves as global 
nutrient cycles are modified.

­

­

­
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Marine ecosystems in silico:

 n = 1,000-10,000 randomly-
generated trait vectors (’plankton’).

 Plankton trait vectors set 
according to physiological ‘rules’, 
e.g. larger cells have a higher nutrient 
limitation threshold, the ability to fixed 
N  comes at the expense of reduced 2

growth rate, etc.

 Plankton compete and the 
ecosystem is an emergent rather 
than prescribed property.
But ...
... the geochemical environment 
and climate co-evolves as global 
nutrient cycles are modified.

 At very high resolved diversity, we 
can explore questions of adaptation 
and rates of evolutionary change by 
spawning new plankton with 
perturbed characteristics.

­

­

­

­
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environmental variable (e.g. temperature)
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In traditional ‘functional 
type’ ecosystem models, 
diversity is not resolved, 
but instead its effects 
highly parameterized 
(e.g. the ‘Epply curve’).

The response to a 
change in climate is then 
instantaneous and fully 
reversible.
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Instead, in a highly 
diverse model, the 
environmental response 
of individual ‘species’ 
can be resolved ...
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Instead, in a highly 
diverse model, the 
environmental response 
of individual ‘species’ 
can be resolved ...

... or instead, the 
capability for adaptation 
(environmental selection 
within existing genetic 
diversity) can be 
represented(?)
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environmental variable (e.g. temperature)
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environmental variable (e.g. temperature)
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climate cooling

If climate cools, the low 
SST optimized 
species/varients no 
longer exist. Ecosystem 
dynamics are 
presumably different.

Niches are unfilled, so ...
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environmental variable (e.g. temperature)
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mutation

Allow non-viable 
plankton to be replaced 
with ‘mutations’ of 
surviving species, using 
the trait based trade-offs.

Q. How ‘frequently’ to 
mutate, and as a 
function of what?

Q. What ‘step size’ to 
take for mutation?
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‘PALEOGENiE’:
 A radical paleo model-data 

concept for theoretically exploring 
questions of marine plankton 
adaptation and evolution.

 Specific questions:
Cause(s) of the delayed recovery 
(100s of kyr) from end Cretaceous 
extinction
Determining which factor(s) best 
explain ecological responses to 
PETM carbon release.

 A tool for gaining understanding 
about future ecosystem stability (+ 
proof concepts for future models).

­

­

­

‘PALEOGENiE’
Computer models and

other baked goods
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Marine ecosystems in silico:

 n =  randomly-
generated trait vectors (’plankton’).
...
...

 At very high resolved diversity, we 
can explore questions of adaptation 
and rates of evolutionary change by 
spawning new plankton with 

­

­

1,000-10,000

There is clearly a very significant 
computational expense involved, 
even if using low resolution/efficient 
Earth system models such as ‘GENIE’.

‘PALEOGENiE’ – computational strategies
Computer models and

other baked goods
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‘PALEOGENiE’ – computational strategies
Computer models and

other baked goods

=> Diagnose full 3D circulation, 
and employ (sparse) parallelized 
matrix multiplication.

=> Calculate plankton transport 
separately from nutrients (and 
other dissolved tracers)?
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‘PALEOGENiE’ – computational strategies
Computer models and

other baked goods

=> Diagnose full 3D circulation, 
and employ (sparse) parallelized 
matrix multiplication.

=> Calculate plankton transport 
separately from nutrients (and 
other dissolved tracers)?
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Terrestrial ecosystem modelling
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Use a crop (plant) model based on carbon resource 
allocation.

Incorporate basic plant biomechanics (60ft long 
leaves == not a good idea ...).

Terrestrial ecosystem modelling
Computer models and

other baked goods

Explore the coupled evolution of terrestrial plants and 
environment?



Mutate the plants across millions of generations and 
across millions of ‘fields’ on a massively parallel 

computing basis.

Select for yield (but at the field scale, hence dealing 
with ‘competition’).

Can also select for e.g. water use efficiency, 
tolerance to gusty wind conditions, etc. etc.

Q. Would an ‘optimal’ crop plant have 6 triangular 
leaves that enables a hexagonal space-filling 

tessellation across the soil surface??

Terrestrial ecosystem modelling ... and crops
Computer models and

other baked goods
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