The Global Weathering Thermostat: Fact, fiction, and computer models

Andy Ridgwell

University of Bristol, University of California – Riverside

Terrestrial weathering can be (approximately equally) divided into carbonate (CaCO₃) and calcium-silicate ('CaSiO₃') weathering:

(1) $2CO_{2(aq)} + H_2O + CaSiO_3 \rightarrow Ca^{2+} + 2HCO_3^{-} + SiO_2$

(2) $CO_{2(aq)} + H_2O + CaCO_3 \rightarrow Ca^{2+} + 2HCO_3^{-}$

Ultimately, the (alkalinity: Ca²⁺) weathering products must be removed through carbonate precipitation and burial in marine sediments:

(3) $Ca^{2+} + 2HCO_3^- \rightarrow CO_{2(aq)} + H_2O + CaCO_3$

It can be seen that in (2) + (3), that the CO_2 removed (from the atmosphere) during weathering, is returned upon carbonate precipitation (and burial). In (1) + (3) (silicate weathering) CO_2 is permanently removed to the geological reservoir. This CO_2 must be balanced by mantle (/volcanic) out-gassing on the very long term.

Furthermore, the rate of silicate weathering should scale with climate.

Hence a ca. 100 kyr time-scale silicate weathering feedback is formed:

higher $pCO_2 \rightarrow$ higher temperatures (& rainfall) \rightarrow higher weathering rates \rightarrow lower pCO_2

From: Hoffman and Schrag [2002]

()

Site 401 (North East Atlantic)

Contours of carbon release vs. source isotopic signature for a global -4‰ carbon isotopic excursion. Contours differ according to the initial mean global δ^{13} C.

Modelling methodology

Modelling methodology

Atm. pCO₂ (ppm)

sur. pH (pH_(sws))

organic carbon

¹¹¹⁰⁰ of 00100000

Conclusions – silicate weathering vs. Corg burial

PETM warming and ocean acidification was likely primarily driven by mantle carbon input (~10,000 PgC) at rates no more than ca. 5% of modern fossil fuel emissions.

Silicate weathering was responsible primarily responsible for the removal of excess carbon and climatic cooling.

Enhanced marine organic carbon burial (~2000 PgC) played a key role in the recovery from the event.

Carbon release continued throughout the event.

Thanks to:

Sarah Greene [Bristol], Sandy Kirtland Turner [UC Riverside], Phil Pogge Von Strandmann [UCL]

Marcus Gutjahr [GEOMAR], Philip Sexton [The Open University], Gavin Foster [NOC]

