
13Does Precambrian carbonate d C 
directly record fluctuations in the 
oxidative state of the biosphere?

 This is not relevant at all.

 Too late – this was only new 15 years ago.

 There are potentially important implications. 
    But only 3 people in the World are going to care.

 Maybe.

 Yes.

 Meh.

forget about it
drink beer
be happy

keep going

meh

vs.
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Ridgwell and Arndt [2014]
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13what exactly does it (temporal changes in d C) mean?

 Re-partitioning of carbon between surficial reservoirs (cf. LGM)?

 Injection (or removal) of isotopically light carbon?
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In the Rothman et al. [2003] model, the 
RDOC reservoir is assumed to have 
been at least 10 times the size of the 
inorganic (ocean DIC + atmospheric 
pCO ) reservoir. For a modern DIC + 2

pCO2 reservoir of 39,000 PgC, this 
mean 390,000 PgC of DOC – more than 
500 times larger than modern). 

(For a higher late Precambrian DIC reservoir, 
6the minimum DOC reservoir becomes 1.6´10  

PgC, equivalent to concentration of a little over 
1000 mgC per L of seawater and becoming the 
third most dominant dissolved species in the 

-ocean after Cl .)
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13Carbonate d C variability through time

One can write (Kump and Arthur [1999], Chem. Geol.):

F  / (F  + F ) = Corg Corg CaCO3

13 13 13 13
(d C  - d C ) / (d C  - d C )obs input CaCO3 Corg

25.0-5.0
13observed (recorded) carbonate d C

C burial
ratio
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13
A new paleo Pokémon appears – The pH control on carbonate d C

13what exactly does it (temporal changes in d C) mean?

 Re-partitioning of carbon between surficial reservoirs (cf. LGM)?

 Injection (or removal) of isotopically light carbon?

 Change in C  weathering and/or burial org

(at fixed carbonate weathering / burial)?

 Change in carbonate weathering and/or burial 

(at fixed C  weathering / burial)?org

 13
 Carbonate diagenesis and loss of primary d C signal, 

   either marine sedimentary or subaerial.

  pH-driven re-partitioning of the where the isotopic composition 

of the mean surficial reservoir is held 
(and what carbonate samples)

Also see: Higgins and Schrag [2003] 
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A new paleo Pokémon appears – The pH control on carbonate d C
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Numerical modelling – Results
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recovery) in d C prior to glacial 
inception.

This would be consistent with a pH 
increase. How?

Perhaps enhanced basaltic 
weathering and CO  drawdown 2

(from a state of low pH and high CO  @ 2

-6 o/oo)??
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What does it take (e.g. sulphate increase/decrease) to change pH sufficiently?

How does it all (global carbonate cycling and carbonate buffering) pan out?

13
Bicarbonate d C & calcite W
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