Evolution of the Ocean's Biological Pump ... in silico

Andy Ridgwell

Evolution of the Biological Pump

Ridgwell and Arndt [submitted]

Evolution of the Biological Pump

Early Earth: Low atmospheric pO_2

Exploring the evolution of the biological pump in silico

```
! calculate carbonate alkalinity
loc ALK DIC = dum ALK &
& - loc H4BO4 - loc OH - loc HPO4 - 2.0*loc PO4 - loc H3SiO4 - loc NH3 - loc HS &
\& + loc H + loc HSO4 + loc HF + loc H3PO4
! estimate the partitioning between the aqueous carbonate species
loc zed = ( &
    (4.0*loc ALK DIC + dum DIC*dum carbconst(icc k) -
loc ALK DIC*dum carbconst(icc k))**2 + &
    4.0*(dum carbconst(icc k) - 4.0)*loc ALK DIC**2 &
               loc conc HCO3 = (dum DIC*dum carbconst(icc k) -
& )**0.5
loc zed)/(dum carbconst(icc k) - 4.0)
loc conc CO3 = \&
& (&
    loc ALK DIC*dum carbconst(icc k) - dum DIC*dum carbconst(icc k) - &
    4.0*loc ALK DIC + loc zed &
& ) &
\& / (2.0*(dum carbconst(icc k) - 4.0))
loc conc CO2 = dum DIC - loc ALK DIC + &
& (&
   loc ALK DIC*dum carbconst(icc k) - dum DIC*dum carbconst(icc k) - &
    4.0*loc ALK DIC + loc zed &
&
& ) &
\& / (2.0*(dum carbconst(icc k) - 4.0))
loc H1 = dum carbconst(icc k1)*loc conc CO2/loc conc HCO3
loc H2 = dum carbconst(icc k2)*loc conc HCO3/loc conc CO3
```


www.seao2.info/misc_harvard2014.html

Exploring the evolution of the biological pump in silico

Exploring the evolution of the biological pump in silico

Simulation running. You can change what the map or graph display using the drop-down lists.

Ridgwell et al. [in prep]

increasing fractionation between pCO_2 and $[CO_2]$ with decreasing temperature towards to poles

Answer: A somewhat reduced biological pump ...

Answer: A somewhat reduced biological pump ...

... or, a strange and different biological pump, consistent with profound ecological change post impact?

('stratified' || 'sluggish' || 'stagnant')

 $\begin{array}{ccc} \hline & Open \mbox{ ocean } \delta^{13}C_{_{DIC}} \mbox{ adjacent to } & Plan \\ modern \mbox{ Tanzania } & early \end{array}$

90 90 0 0 -90 -90 -260 -180 100 180 0 $\mathbf{0}$ Ocean depth (km) yellow == 2-2 observed $\delta^{13}C_{DIC}$ yellow == 3-3for a miniferal δ^{13} C $\delta^{\mbox{\tiny 18}} O$ has been converted 4 into pale temperature and then to habitat depth using a coupled GCM 5 5 -1.0 0.0 2.0 3.0 -1.0 3.0 1.0 0.0 2.0 1.0 $\delta^{13}C_{_{DIC}}$ (‰) $\delta^{^{13}}\overline{\mathsf{C}_{_{\mathsf{DIC}}}}$ (%)

Planktic foraminiferal δ^{13} C from early Eocene Tanzania

Open ocean $\delta^{^{13}}C_{_{\text{DIC}}}$ adjacent to modern Tanzania

90 -

0

-90

0

-260

modern Tanzania early Eocene Tanzania 90 -90-0 0 -90 -90 -260 -180 100 180 0 0 Ocean depth (km) 2-2 3-3 blue == model $\delta^{13}C_{DIC}$ 4 4 (Eocene config) 5-5 -1.0 0.0 2.0 3.0 -1.0 0.0 2.0 3.0 1.0 1.0 $\delta^{13} C_{\text{DIC}}$ (‰) $\delta^{13}\overline{C}_{DIC}$ (‰)

Planktic foraminiferal δ^{13} C from

Open ocean $\delta^{13}C_{DIC}$ adjacent to

Thanks to:

Jamie Wilson & Steve Barker, Eleanor John, Paul Pearson [Cardiff] Sandra Arndt, Daniela Schmidt [Bristol] Ellen Thomas [Yale]

The Royal Society, Natural Environmental Research Council, EU ERC

Evolution of the Biological Pump:

Planktic carbonate production and 'ballasting'

Compilation of sediment trap observations: depths >= 2000 m (to exclude hydrodynamically distorted fluxes and relationships) and differentiated by basin: cyan == Atl, yellow == Ind, green == Pac, magenta == SO.

[Wlison et al., 2012; GBC 26, doi:10.1029/2012GB004398]

Evolution of the Biological Pump: Planktic carbonate production and 'ballasting'

Spatial distribution of carrying capacity (ballasting) coefficients calculated using geographically weighted regression analysis for CaCO₃.

Wilson et al. [2012]