On the discourse between advances in mechanical algebra and natural philosophy, as pertaining to the furtherment of enlightenment in the Ages of the Earth

Duke Andrew Ridgwell

CORO-UNO ('Valdes' chipset)

CORO-UNO ('Valdes' chipset)

(Biogeochemcial models & the art of (mis)using data)

Andy Ridgwell

European Research Council Established by the European Commission

Meanwhile, in the ocean ...

Western Atlantic Glacial δ¹³C (PDB)

The distribution of δ^{13} C of Σ CO₂ in the modern western Atlantic [Kroopnick, 1985] vs. a recently updated glacial transect of δ^{13} C of Σ CO₂ for the western Atlantic Ocean basins [Curry and Oppo, 2005].

Spatial patterns, but still (n-1)-steps removed from the 'data'

Meanwhile, in the ocean ...

Late Paleocene benthic δ^{13} C patterns

Down to 3-steps removed from the 'data'

evaluation

Late Paleocene benthic δ^{13} C patterns

Model-predicted gradients in benthic δ^{13} C (both direction and approximate magnitude) can be compared to available data-based reconstructions.

3-steps removed from the 'data'

Model-predicted benthic δ^{13} C can be assessed statistically vs. observations by e.g., 'Taylor diagrams'

2-steps removed from the 'data'

The data ...

Sediments spanning the Palaeocene-Eocene boundary recovered from ODP Leg 208 (Walvis Ridge) Picture courtesy of Daniela Schmidt (University of Bristol)

How to get to 1-step removed from the 'data'

(Vital effects can be parameterized as e.g. planktic (or benthic) CaCO₃ is formed. However, still no consideration of multiple fractions of CaCO₃ with different dissolution susceptibility or diagenesis in general.)

The role of 'bioturbation' (burrowing/injesting/filtering bugs) in sedimentary $CaCO_3$ dissolution

CaCO₃ dissolution Detrital rain flux CaCO₃ rain flux

The role of 'bioturbation' (burrowing/injesting/filtering bugs) in sedimentary $CaCO_3$ dissolution

CaCO₃ dissolution Detrital rain flux CaCO₃ rain flux

No bioturbational mixing

With no bioturbational mixing, dissolution of $CaCO_3$ will still continue until the surface sediments are composed purely of refractory material, but now the depth of the clay layer is set by diffusion (ca. 1 cm depth). Thus, less carbon release is required to make the surface sediments go carbonate free and atmospheric CO_2 is less well buffered.

Fun with models and data: ETM2

Stap et al. [2010]; Jennions et al. [submitted]

Fun with models and data: ETM2

Stap et al. [2010]; Jennions et al. [submitted]

Fun with models and data: ETM2

Stap et al. [2010]; Jennions et al. [submitted]

The 'perfect' (age) model ...

... with no connection with 'reality' (what is measurable and knowable).

Fun with models and data: ETM2 and 'interface' vs. 'homogeneous' dissolution

Fun with models and data: ETM2 and 'interface' vs. 'homogeneous' dissolution

Fun with models and data: ETM2 and 'interface' vs. 'homogeneous' dissolution

Lunt et al. [2010, 2011]

temperature anomaly (°C)

Consider:

Co-varying (glacial-interglacial) CaCO₃ dissolution cycles and how a (varying) stable isotope is recorded [Here: δ^{18} O of planktic carbonate following SPECMAP plus ... 500 PgC CO₂ removed from the atmosphere (to the terrestrial biosphere) across the deglacial transition (and then gradually added back again).]

Fun with models and data: Quantifying carbon release

time

Quantifying carbon release – mass balance estimate approach

Quantifying carbon release – mass balance estimate approach

Quantifying carbon release – model trial-and-error approach

time

Quantifying carbon release – model trial-and-error approach

Quantifying carbon release – model trial-and-error approach

Fun with models and data: <u>Data assimilation</u>

2 The EnKF

The EnKF is now briefly described with focus on notation and the standard analysis scheme. The notation follows that used in Evensen (2003).

2.1 Ensemble representation for P

As in Evensen (2003), we have defined the matrix holding the ensemble members $\psi_i \in \Re^n$,

 $\boldsymbol{A} = (\boldsymbol{\psi}_1, \boldsymbol{\psi}_2, \dots, \boldsymbol{\psi}_N) \in \Re^{n \times N}, \tag{1}$

where N is the number of ensemble members and n is the size of the model state vector.

The ensemble mean is stored in each column of \overline{A} which can be defined as

$$\overline{A} = A \mathbf{1}_N,$$

where $\mathbf{1}_N \in \Re^{N \times N}$ is the matrix where each element is equal to 1/N. We can then define the ensemble perturbation matrix as

$$A' = A - \overline{A} = A(I - \mathbf{1}_N).$$
(3)

The ensemble covariance matrix $P_{e} \in \Re^{n \times n}$ can be defined as

$$\boldsymbol{P}_{\rm e} = \frac{\boldsymbol{A}'(\boldsymbol{A}')^{\rm T}}{N-1}.$$

2.2 Measurement perturbations

Given a vector of measurements $d \in \Re^m$, with *m* being the number of measurements, we can define the *N* vectors of perturbed observations as

$$\boldsymbol{d}_j = \boldsymbol{d} + \boldsymbol{\epsilon}_j, \quad j = 1, \dots, N, \tag{5}$$

which can be stored in the columns of a matrix

$$\boldsymbol{D} = (\boldsymbol{d}_1, \boldsymbol{d}_2, \dots, \boldsymbol{d}_N) \in \Re^{m \times N}, \tag{6}$$

while the ensemble of perturbations, with ensemble mean equal to zero, can be stored in the matrix

$$\boldsymbol{E} = (\boldsymbol{\epsilon}_1, \boldsymbol{\epsilon}_2, \dots, \boldsymbol{\epsilon}_N) \in \Re^{m \times N}, \tag{7}$$

from which we can construct the ensemble representation of the measurement error covariance matrix

$$\boldsymbol{R}_{\rm e} = \frac{\boldsymbol{E}\boldsymbol{E}^{\rm T}}{N-1}.\tag{8}$$

2.3 Analysis equation

(2)

The analysis equation, expressed in terms of the ensemble covariance matrices, is

$$\boldsymbol{A}^{a} = \boldsymbol{A} + \boldsymbol{P}_{e}\boldsymbol{H}^{T}(\boldsymbol{H}\boldsymbol{P}_{e}\boldsymbol{H}^{T} + \boldsymbol{R}_{e})^{-1}(\boldsymbol{D} - \boldsymbol{H}\boldsymbol{A}).$$
(9)

Using the ensemble of innovation vectors defined as

$$\boldsymbol{D}' = \boldsymbol{D} - \boldsymbol{H}\boldsymbol{A} \tag{10}$$

and the definitions of the ensemble error covariance matrices in Eqs. (4) and (8) the analysis can be expressed as

$$\boldsymbol{A}^{\mathrm{a}} = \boldsymbol{A} + \boldsymbol{A}' \boldsymbol{A}'^{\mathrm{T}} \boldsymbol{H}^{\mathrm{T}} \left(\boldsymbol{H} \boldsymbol{A}' \boldsymbol{A}'^{\mathrm{T}} \boldsymbol{H}^{\mathrm{T}} + \boldsymbol{E} \boldsymbol{E}^{\mathrm{T}} \right)^{-1} \boldsymbol{D}'.$$
(11)

When the ensemble size, N, is increased by adding random samples, the analysis computed from this equation will converge towards the exact solution of Eq. (9) with P_e and R_e replaced by the exact covariance matrices Pand R.

Evensen [1994, 2003, 2004]

Fun with models and data: Data assimilation

CORO-MUL79 ('DeConto' chipset)

Quantifying carbon release – numerical 'inversion'

1.0

0.0

-1.0

-3.0

-4.0

-5.0

 $\mathbf{0}$

 $(\%)^{-1.0}$ (%) $(\%)^{-2.0}$ (%) $(\%)^{-3.0}$

Fun with models and data: Surface δ^{13} C record inversions

Zeebe et al. [2014] (doi/10.1073/pnas.1321177111)

Fun with models and data: Surface δ^{13} C record inversions

Fun with models and data: Surface δ^{13} C record inversions

Figure 4 | Model results of the PETM carbon release rate and cumulative amount of carbon added versus time from the onset of the CIE (535 mbs) (age model is from ref. 2). a, $\delta^{13}C_{atm}$ that we used to force GENIE. b, Model results of the PETM carbon release rate. c, Model results of the cumulative amount of carbon added. d, Model results of the PETM atmospheric pCO_2 . e, Model results of the PETM global average temperature (°C). The two best-fit simulations are shown in **b**-e:(1) CH₄ simulation (black solid line); (2) C_{org} simulation (red dotted line). Both simulations are with bioturbation on.

nature geoscience

ARTICLES PUBLISHED ONLINE: 5 JUNE 2011 | DOI: 10.1038/NGE01179

Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum

Ying Cui¹*, Lee R. Kump¹, Andy J. Ridgwell², Adam J. Charles³, Christopher K. Junium^{1†}, Aaron F. Diefendorf^{1†}, Katherine H. Freeman¹, Nathan M. Urban^{1†} and Ian C. Harding³

Fun with models and data: Surface δ^{13} C record inversions

Penman et al. [2014] (Paleoceanography)

Fun with models and data: Surface δ^{13} C record inversions

Fun with models and data: Benthic δ^{13} C record inversions

Problem #1: 'target' (proxy record) is remote (in time) from the carbon input (assuming to the atmosphere).

Fun with models and data

Kirtland-Turner and Ridgwell [2013]

Thanks to:

Sandy Kirtland-Trurner, Suzi Jennions, Ellen Thomas, Dani Schmidt

The Royal Society, Natural Environmental Research Council, EU ERC

European Research Council Established by the European Commission

